UNIVERSIDAD PEDAGOGICA NACIONAL FACULTAD DE CIENCIA Y TECNOLOGIA DEPARTAMENTO DE QUMICA CURSO TEORIAS QUIMICAS 1

TRABAJO INDIVIDUAL: LA QUIMICA UNA CIENCIA

CUANTITATIVA

Docente:

Ximena Umbarila C.

OBJETIVO:

Reconocer las unidades del sistema internacional de medidas. SI Convertir datos en notación científica y de una unidad a otra. Aproximar las respuestas para alcanzar un nivel de certeza adecuado

Utilizar gráficas para ordenar datos

CONSULTAR:

La definición de segundo, metro, kilogramo.

Unidades Básicas		
cantidad	unidad	
Tiempo	Segundo(s)	
Longitud	Metro(m)	
Masa	Kilogramo(Kg)	
Temperta	Kelvin(K)	
Cantidad	Mol (mol)	
sustancia		
Intensidad	Candela (cd)	
Luminosa		
Intensidad	Amperio (A)	
eléctrica		

Prefijos utilizados en el SI				
Prefijo	símbolo	factor	N. científica	ejemplo
Giga	G	1 000 000 000	10 ⁹	Gigametro
Mega	M	1 000 000	10 ⁶	Megametro
Kilo	.k	1 000	10 ³	Kilometro
Deci	.d	1/10	10 ⁻¹	Decilitro
centi	.C	1/100	10 ⁻²	Centilitro
Mili	.m	1/1 000	10 ⁻³	Miligramo
Micro	μ	1/1 000 000	10 ⁻⁶	Microgramo
Nano	.n	1/1 000 000 000	10 ⁻⁹	Nanómetro
pico	.p	1/1 000 000 000 000	10 ⁻¹²	picometro

- 1. La luz, o radiación visible, tiene longitudes de onda entre 4000 y 7500 A. por ejemplo, la luz amarilla tiene una longitud de onda de 5800 A. expresar esta longitud de onda en (a) metros; (b) nanómetros; (c) picómetros; (d) centímetros. (1 A= 10⁻¹⁰ m).
- 2. La velocidad de la luz es de 30000 millones de centímetros por segundo. Expresar esta cantidad en forma exponencial: (a) en cm/s (b) en Km/s.
- 3. Un automóvil se mueve a razón de 60 Km por hora. ¿ a que corresponde esta velocidad en metros por segundo?
- 4. Expresar en notación científica los siguientes datos:
 - La densidad de la parte menos densa de la atmosfera del sol es 0.000000028 g/cm³
 - El diámetro del sol mide 1 392 000 Km
 - La masa de un protón es 0.000 000 000 000 000 000 000 001 672 62 Kg
- 5. La densidad del mercurio a 273.15 K es 13.60g/cm³. ¿cuál es el volumen que ocuparan 35 g de mercurio?
- 6. Cuál es la densidad de una bola de acero que tiene un diámetro de 1,5 cm y una masa de 14.12 g?
- 7. Calcular la densidad del Cu (densidad es 8.96 g/cm³) en kg/m³.
- 8. Calcular la densidad de un cilindro de Al de masa 75.21 g, diámetro 1,5 cm y una altura de 15.75 cm.
- 9. Calcular el volumen ocupado por una muestra de 23.65 g de C₆H₆.(densidad 876.50 Kg/m³)
- 10. El radio atómico del Mg es 1.36 A y una masa atómica de 24.312 g. ¿cuál es la densidad del átomo en kg/m³? (suponga que el átomo es aproximadamente esférico.
- 11. Se introduce un pedazo de metal con una masa de 147 g en un probeta de 50 ml. El nivel de agua sube de 20 ml a 41 ml. Cuál es la densidad del metal
- 12. Cuál es el volumen de una muestra que tiene una masa de 20 g y una densidad de 4 g/ml?
- 13. Un cubo de metal tiene una masa de 20 g y un volumen de 5 cm³. Esta hecho de aluminio puro? Explique la respuesta.
- 14. Con la información de la siguiente tabla responder las preguntas.

AUTO	Tiempo transcurrido	Tres vehículos realizan un mismo recorrido en los
Α	14400 segundos	tiempos que indica la tabla.
В	0.125 dias	(a) Que vehículo llego primero
С	5.78 x 10 ⁻⁴ años	(b) Cuál fue el más lento?

- 15. (a) Calcular el peso del HNO₃, puro por litro del ácido concentrado con 50% en peso de HNO₃ y densidad 1.2 (b) calcular el peso del HNO₃ puro en 50 ml del ácido concentrado.
- 16. Un laboratorista prepara vinagre en la proporción de 5 g de CH₃COOH y 95% de agua. Con base en esta información calcule.
 - (a) Gramos de CH₃COOH presentes en 1000 g de vinagre.

- (b) Gramos de agua presentes en 1 g de vinagre
- (c) Gramos de agua por cada 30 g de ácido.
- 17. Una mezcla de concreto se prepara en una proporción 1:4 cemento-arena. Calcule la cantidad de hilos de cemento y arena que se deben mezclar para obtener 1000 kilos de concreto.
- 18. Una moneda de cinco centavos tiene 75% de Cu y 25% de Ni . ¿Cuántos gramos de níquel deben agregarse a 150 g de Cu para la realización de la aleación anterior?
- 19. Un dentífrico requiere 1 mg de F por 1 kg de pasta dental. ¿cuantos miligramos de fluoruro de sodio, NaF, se deben agregar?

ENLACES DE CONSULTA

http://www.slideshare.net/jova2714/sistema-internacional-de-medidas-s

http://es.wikibooks.org/wiki/F%C3%ADsica General para f%C3%ADsicos/Introducci%C3%B3n a la F%C3%ADsica/Unidades y medidas

http://www.youtube.com/watch?v=f1pj641Vm_Y

BIBLIOGRAFIA

GARZON G. (1988). Fundamentos de Química General. Editorial Mac Graw Hill. Bogotá. RESTREPO J. (1988) Teoría y problemas de Química general. Universidad Nacional de Colombia. Sede Medellín.